Abstract:
Cytochrome c (Cyt-c), a small mitochondrial electron transport heme protein, has been employed in bioelectrochemical and therapeutic applications. However, its potential as both a biosensor and anticancer drug is significantly impaired due to poor long-term and thermal stability. To overcome these drawbacks, we developed a site-specific PEGylation protocol for Cyt-c. The PEG derivative used was a 5 kDa mPEG-NHS, and a site-directed PEGylation at the lysine amino-acids was performed. The effects of the pH of the reaction media, molar ratio (Cyt-c:mPEG-NHS) and reaction time were evaluated. The best conditions were defined as pH 7, 1:25 Cyt-c:mPEG-NHS and 15 min reaction time, resulting in PEGylation yield of 45% for Cyt-c-PEG-4 and 34% for Cyt-c-PEG-8 (PEGylated cytochrome c with 4 and 8 PEG molecules, respectively). Circular dichroism spectra demonstrated that PEGylation did not cause significant changes to the secondary and tertiary structures of the Cyt-c. The long-term stability of native and PEGylated Cyt-c forms was also investigated in terms of peroxidative activity. The results demonstrated that both Cyt-c-PEG-4 and Cyt-c-PEG-8 were more stable, presenting higher half-life than unPEGylated protein. In particular, Cyt-c-PEG-8 presented great potential for biomedical applications, since it retained 30–40% more residual activity than Cyt-c over 60-days of storage, at both studied temperatures of 4 C and 25 C.
Reference:
SANTOS, João H.P.M.; FEITOSA, Valker Araujo; MENEGUETTI, Giovanna Pastore; CARRETERO, Gustavo; COUTINHO, João A.P.; VENTURA, Sónia P.M.; RANGEL-YAGUI, Carlota O. Lysine-PEGylated cytochrome C with enhanced shelf-life stability. Biosensores, v.12, n.2, 13p., 2022.
Access to the article on the Journal website:
https://www.mdpi.com/2079-6374/12/2/94
Cytochrome c (Cyt-c), a small mitochondrial electron transport heme protein, has been employed in bioelectrochemical and therapeutic applications. However, its potential as both a biosensor and anticancer drug is significantly impaired due to poor long-term and thermal stability. To overcome these drawbacks, we developed a site-specific PEGylation protocol for Cyt-c. The PEG derivative used was a 5 kDa mPEG-NHS, and a site-directed PEGylation at the lysine amino-acids was performed. The effects of the pH of the reaction media, molar ratio (Cyt-c:mPEG-NHS) and reaction time were evaluated. The best conditions were defined as pH 7, 1:25 Cyt-c:mPEG-NHS and 15 min reaction time, resulting in PEGylation yield of 45% for Cyt-c-PEG-4 and 34% for Cyt-c-PEG-8 (PEGylated cytochrome c with 4 and 8 PEG molecules, respectively). Circular dichroism spectra demonstrated that PEGylation did not cause significant changes to the secondary and tertiary structures of the Cyt-c. The long-term stability of native and PEGylated Cyt-c forms was also investigated in terms of peroxidative activity. The results demonstrated that both Cyt-c-PEG-4 and Cyt-c-PEG-8 were more stable, presenting higher half-life than unPEGylated protein. In particular, Cyt-c-PEG-8 presented great potential for biomedical applications, since it retained 30–40% more residual activity than Cyt-c over 60-days of storage, at both studied temperatures of 4 C and 25 C.
Reference:
SANTOS, João H.P.M.; FEITOSA, Valker Araujo; MENEGUETTI, Giovanna Pastore; CARRETERO, Gustavo; COUTINHO, João A.P.; VENTURA, Sónia P.M.; RANGEL-YAGUI, Carlota O. Lysine-PEGylated cytochrome C with enhanced shelf-life stability. Biosensores, v.12, n.2, 13p., 2022.
Access to the article on the Journal website:
https://www.mdpi.com/2079-6374/12/2/94